跳至主要内容

LYTAC technology, a lysosomal degradation technology

Targeted protein degradation is an emerging direction in the field of drug development. 40% of human genes encode extracellular proteins or membrane proteins. The degradation of cell membrane proteins is usually accomplished through lysosomal pathways.Lysosomal targeted chimeras (Lytac technology) are an innovative technology that degrades cell membrane or extracellular proteins, enabling degradation of more “non-prescriptable” targets.

The use of relatively non-specific lysosomal degradation pathways to selectively degrade target proteins greatly expands the range of targets. LYTAC technology uses glycan tags to label extracellular proteins to target lysosomes for degradation. First, let’s understand what is a lysosome. The lysosome is a dynamic structure. The shape and size of the lysosome are different in different types of cells. Generally, it is spherical vesicles with a diameter of 0.25~0.8μm, and contains a variety of acid hydrolases, which can decompose various exogenous or endogenous macromolecular substances. So the lysosome is likened to the “enzyme warehouse” and “digestive system” in the cell.

The main function of functional lysosomes is digestion, and the source of digestion substrates can be in the following three ways:

(1) Autophagocytosis, phagocytosis is the original material in the cell;

(2) the harmful substances consumed by the phagosome;

(3) Nutrients entered into the cell.

In addition to the function of phagocytosis and digestion, lysosomes also have the function of autolysis, that is, some soon-to-be senescent cells digest themselves by releasing various hydrolases by lysosome rupture.In addition, enzymes in lysosomes can also be released extracellular for digestion of the extracellular matrix.

Some experts pointed out that the lysosome pathway can theoretically degrade various biological macromolecules and even organelles. On the other hand, lysosomes can also degrade proteins that are originally degraded by the proteasome. Therefore, the lysosomal targeted degradation technology may theoretically degrade various disease-related substances such as various disease-causing proteins, protein aggregates, DNA/RNA, organelles, pathogens, lipids, and peroxisomes. LYTAC technology mainly uses the endosome-lysosome pathway, so it is suitable for extracellular proteins and cell membrane proteins.

The target of PROTAC is usually intracellular protein. Medicilon’s PROTAC drug discovery technology platform summarizes the currently popular and popular target protein ligands; it has established a wide range of popular target proteins with high affinity small molecules and small molecule fragment compound libraries (TPSM). ), a wide range of E3 ligase high-affinity small molecules and small molecule fragments (E3SM); the linker system has been established, including the collection of a large number of bifunctional linkers (BF-Linker) with wide diversity. These accumulated compound libraries can help quickly and efficiently synthesize a large number of highly active PTROTAC bispecific small molecules, which greatly improves the drug development process using PROTAC technology.

LYTAC technology uses the mechanism of cell degradation of proteins to achieve degradation of proteins outside the cell or on the cell membrane. The principle is: LYTAC molecule is a bifunctional molecule composed of an oligosaccharide peptide group (which can interact with cell surface receptors). Combine with CI-M6PR, CI-M6PR is also called IGF2R) and an antibody that binds to a specific transmembrane protein or extracellular protein (this antibody can also consist of a small protein-binding molecule). When the LYTAC molecule binds to CI-M6PR and the target protein at the same time, the resulting complex is swallowed by the cell membrane to form a transport vesicle, then this complex is carried to the lysosome, and then the target protein is lysosome Body degradation.

The advantage of LYTAC technology is that it uses the universally expressed endogenous degradation pathway to degrade extracellular proteins and membrane proteins. The main disadvantage is that the molecular weight is large and the antibodies or peptides in the molecule may induce immune responses. At present, the technology is relatively new, and a lot of further verification and mechanism analysis work is needed.

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...

The Launch Meeting was Held by Medicilon and DAC Biotech of the Contract Research on ADC Preclinical Study

  Chuansha, Shanghai, Nov. 8th, 2019 — Medicilon held the launch meeting with Hangzhou DAC Biotech Co., Ltd to initiate the   preclinical study   of the antibody-drug-conjugate (ADC)  DXC005, including the   pharmacology study ,   DMPK study   and the   safety evaluation . Medicilon has previously completed integrated  preclinical research  on ADC drugs cooperating with DAC Biotech and other companies. Two of them has been approved by NMPA and entered Phase I clinical trials. About Hangzhou DAC Biotech Co., Ltd Hangzhou DAC Biotech, Co., Ltd was officially registered in HEDA Area, Hangzhou City, Zhejiang Province, China around the end of Year 2012, and is located nearby the bank of beautiful Qiantang River. The company focuses on developing conjugate of monoclonal antibody and small molecular cytotoxic drug, both of which are banded together with smart linkers. About Antibody-Drug-Conjugate (ADC) ADCs ...