跳至主要内容

What is preclinical testing?

In the process of preclinical testing of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury.

preclinical testing
preclinical testing

What is the basis of preclinical testing?

According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease.

Then, a preclinical research phase followed, before which, as described above, the potential toxicity of the compound was determined. Factors such as dosage, method of administration, and frequency of administration are also studied to support the next phase of clinical trials, also known as clinical studies. Here, the compound was tested in humans to see if it can be used to treat the disease that triggered the search.

Identify potential targets

The main reason why the compound cannot be used as a medicine is that the compound cannot be used as a medicine or is toxic. Therefore, determining drug targets is one of the most important parts of preclinical testing. The latest advances in technology have increased the number of potential targets or targets that can be used. Bioinformatics tools can now be used to “mine” the available data to search for these potential targets. These may come from published studies or patents, gene expression and proteomics data sets, data on transgenic phenotypes, and compound analysis data.

Targets include a wide range of biomolecules, such as proteins, RNA and DNA. A key requirement for treating biomolecules as targets is whether they are “absorbable by the body.” This means that the compound to be tested needs to be able to approach the target and then induce a measurable response.

Certain classes of target compounds are more suitable for different classes of compounds. For example, G protein-coupled receptors are good potential targets for small molecules, and antibodies are more suitable for blocking protein-protein interactions.

How to find the “target”?

Once the treatment goal is determined, the next stage of preclinical testing will be to determine the “hit drug.” The effects of these compounds may be able to treat the disease. Here, different kinds of measurements need to be used.

In high-throughput screening, a large number of compounds are tested against target compounds to see if any compounds show the potential to enter the next stage. These rely on automated systems that can test a large number of compounds without making any assumptions about how these compounds might interact with the target. In contrast, centralized screening can only detect a smaller number of compounds, but compounds that are more likely to interact with the target. Other screening methods used in this stage of preclinical testing include: fragment screening (in which the protein structure of the compound-target interaction is determined) and physiological screening (in which only tissues are used instead of targets or cells).

What happens once the hit is confirmed?

Once the target is determined, it will be further studied to make the compound more selective and effective. This stage of preclinical testing studies the structure-activity relationship between the compound and the target, and then studies whether the compound interacts with the target of different species.

This indicates whether the compound can be tested in animal models of the disease, which is an important part of toxicity testing during preclinical testing. The compound is then refined to maintain the beneficial properties while reducing or eliminating the unfavorable aspects.

What other factors need to be considered for pre-clinical testing?

Other factors that should be considered during preclinical testing are the nature of the disease and the demographic characteristics of the patient suffering from it.

For example, neurodegenerative diseases (such as Alzheimer’s disease) are progressive diseases and therefore require long-term treatment. This means that in preclinical testing, it is crucial to test the compound in a way that mimics long-term treatment. This highlights any compounds that may cause toxicity after prolonged exposure.

Because neurodegenerative diseases have a greater impact on the elderly, potential reproductive toxicity can be investigated in the later stages of preclinical testing. However, since these patients may also be taking other drugs, it may be prudent to test the interaction between the compound and the approved drug as early as possible in preclinical testing.

The route and frequency of administration are also factors that need to be considered in patient demographics. For example, in neurodegenerative diseases, patients will benefit from more manageable treatments, such as small tablets or liquids taken once a day or less. Focusing on compounds that can be administered in this way may become the focus of preclinical testing.

Article Source:

1.fda.gov The Drug Development Process www.fda.gov/…/drug-development-process

2. Hughes, J. P., et al. (2011) Principles of early drug discovery. British Journal of Pharmacology doi: 10.1111/j.1476-5381.2010.01127.x

3. Steinmetz, K. L. and Spack, E. G. (2009) The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurology https://doi.org/10.1186/1471-2377-9-S1-S2

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...

The Launch Meeting was Held by Medicilon and DAC Biotech of the Contract Research on ADC Preclinical Study

  Chuansha, Shanghai, Nov. 8th, 2019 — Medicilon held the launch meeting with Hangzhou DAC Biotech Co., Ltd to initiate the   preclinical study   of the antibody-drug-conjugate (ADC)  DXC005, including the   pharmacology study ,   DMPK study   and the   safety evaluation . Medicilon has previously completed integrated  preclinical research  on ADC drugs cooperating with DAC Biotech and other companies. Two of them has been approved by NMPA and entered Phase I clinical trials. About Hangzhou DAC Biotech Co., Ltd Hangzhou DAC Biotech, Co., Ltd was officially registered in HEDA Area, Hangzhou City, Zhejiang Province, China around the end of Year 2012, and is located nearby the bank of beautiful Qiantang River. The company focuses on developing conjugate of monoclonal antibody and small molecular cytotoxic drug, both of which are banded together with smart linkers. About Antibody-Drug-Conjugate (ADC) ADCs ...