跳至主要内容

Novel Antibiotic Production Platform Harnesses Synthetic Biology and Chemistry

 Researchers from the University of Bristol say they have combined synthetic biology and chemistry to create a modern technology platform to allow the production of novel antibiotics to combat increasing microbial drug resistance.

The team is working on derivatives of pleuromutilin, with the core pleuromutilin isolated from the mushroom Clitopilus passeckerianus. Pleuromutilin derivatives are potent antibacterial drugs but often require difficult chemical modifications, according to the scientists.

In a new paper (“Heterologous Expression Reveals the Biosynthesis of the Antibiotic Pleuromutilin and Generates Bioactive Semi-Synthetic Derivatives”), published in Nature Communications, the Bristol researchers report the genetic characterization of the steps involved in pleuromutilin biosynthesis through heterologous expression and generate a semisynthetic pleuromutilin derivative with enhanced antibiotic activity.  This was achieved by taking the complete genetic pathway for pleuromutilin production, containing seven genes, from the mushroom and rebuilding it in the industrially useful filamentous fungus Aspergillus oryzae, traditionally used to make soy sauce. This then generated a unique platform of Aspergillus lines with combinations of the pathway genes to allow new compounds to be synthesized.



Novel Antibiotic Production Platform Harnesses Synthetic Biology and Chemistry

“The rise in antibiotic resistance is a major threat for human health. Basidiomycete fungi represent an untapped source of underexploited antimicrobials, with pleuromutilin—a diterpene produced by Clitopilus passeckerianus—being the only antibiotic from these fungi leading to commercial derivatives. Here we report genetic characterization of the steps involved in pleuromutilin biosynthesis, through rational heterologous expression in Aspergillus oryzae coupled with isolation and detailed structural elucidation of the pathway intermediates by spectroscopic methods and comparison with synthetic standards,” write the investigators.

A. oryzae was further established as a platform for bio-conversion of chemically modified analogues of pleuromutilin intermediates, and was employed to generate a semi-synthetic pleuromutilin derivative with enhanced antibiotic activity. These studies pave the way for future characterisation of biosynthetic pathways of other basidiomycete natural products in ascomycete heterologous hosts, and open up new possibilities of further chemical modification for the growing class of potent pleuromutilin antibiotics.”

“This is a classic case where nature has produced something really useful, but combining nature with chemistry through a synthetic biology approach we are able to make things even better,” says Christine Willis, Ph.D., from the School of Chemistry, adding that these new compounds are some of the only new class of antibiotics to join the market recently as human therapeutics.

Furthermore, with their novel mode of action and lack of cross-resistance, pleuromutilin’s and their derivatives represent a class with further great potential, particularly for treating resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and extensively drug-resistant tuberculosis (XTB), according to Dr. Willis.

Gary Foster, Ph.D., from the School of Biological Sciences who led the team, and Andy Bailey, Ph.D., add that “This research is very exciting as it also paves the way for future characterization of biosynthetic pathways of other basidiomycete natural products in ascomycete heterologous hosts. Many mushrooms have never even been examined and act as an untapped resource. The platform also opens up new possibilities of further chemical modification for the growing class of potent antibiotics.”

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...

What is Toxicokinetics?

Toxicokinetics  is essentially the study of “how a substance gets into the body and what happens to it in the body”. Four processes are involved in toxicokinetics. The study of the kinetics (movement) of chemicals was originally conducted with pharmaceuticals and thus the term pharmacokinetics became commonly used. In addition, toxicology studies were initially conducted with drugs. However, the science of toxicology has evolved to include environmental and occupational chemicals as well as drugs. Toxicokinetics is thus the appropriate term for the study of the kinetics of all toxic substances. Frequently the terms  toxicokinetics ,  pharmacokinetics , or disposition may be found in the literature to have the same meaning. Disposition is often used in place of toxicokinetics to describe the time-course of movement of chemicals through the body (that is, how does the body dispose of a xenobiotic?). The disposition of a toxicant along with its’ biological reactivi...