跳至主要内容

Medicilon's Drug ADME/PK Assays Services

 Medicilon's pharmacokinetics department offers the clients a broad spectrum of high quality of services in the areas of in vitro ADME, in vivo pharmacokinetics and bioanalysis services, ranging from small molecules to large molecules, such as protein and antibody. The animal species involved in our services are non-human primate, canine, mice, rat, rabbit and etc. Meanwhile, non-human primate experimental platform and isotope platform for protein/antibody are certified by the Shanghai government.



Available PK studies include:

Method development and validation (GLP,Non-GLP)
Bioanalysis
Pharmacokinetics (Tumor bearing rodents, Bioavailability, Crossover studies,  Cassette (N in 1) dosing and analysis, effects of gender on pharmacokinetics, BBB  penetration )
Stability in vehicles and plasma
Drug interaction studies
In vitro metabolic stability
Prediction and identification of major metabolites
Toxicokinetics analysis
Distribution studies

In vivo
Medicilon offers a suite of in vivo ADME services and features a team with over 12 years of experience. We are equipped to conduct in-life studies in rat ,pig , mouse and dog. We provide comprehensive radiolabel ADME study support across non-clinical species.
Available studies include:

Excretion Studies
Tissue Distribution
Plasma Protein Binding Studies
Others……

Bioanalysis:

Advanced bioanalytical method development
Advanced bioanalytical method validation
Pharmacokinetics
Others……

In vitro
With extensive knowledge of in vitro ADME and pharmacokinetics gained through working within drug discovery environments at both pharmaceutical and biotech companies, our ADME experts offer a consultative approach ensuring that the right experiments are performed at the right time.

ADME Assays SERVICES has been created with the objective to give support on pharmacokinetics and metabolism studies to small and mid-size pharmaceutical and biotech companies involved in research and development of new drugs or new formulations.

• Absorption ‐ route of drug delivery
• Distribution ‐ where does the drug go, where does it need to go and what
are the implications
• Metabolism Metabolism ‐ this will occur and could impact several several variables variables
• Excretion – how is the drug eliminated

Pharmacokinetics is concerned with the variation in drug concentration with time as a result of absorption, metabolism, distribution and excretion
– Drug dose, route of administration, administration, rate and extent of absorption, absorption, distribution distribution rate (particularly to site of action) and rate of elimination
– Pharmacokinetics may be simply defined as what the body does to the drug
– Pharmacodynamics defined as what the drug does to the body

These pharmacokinetic processes, often referred to as ADME, determine the drug concentration in the body when medicines are prescribed.

Contact US

Email : marketing@medicilon.com
Tel : +86 021 58591500

Tips : Above is part of drug adme assays , adme study services and pharmacokinetics adme Services. You can also CONTACT US with any question or enquiry you may have. We will be happy to discuss your needs in detail and design an appropriate plan of action.

Related Articles:

Preclinical ADME Studies

Factors Affecting Pharmacokinetics of Drugs

High-throughput ADME research in the new drug discovery phase

ADME Pharmacokinetics Studies

High Throughput ADME Study of New Drug Discovery

Drug absorption, distribution, metabolism and excretion (pharmacokinetics)

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential toxicity of the compou

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d

Novel Parkinson’s Therapies Possible with New Mouse Model

Parkinson's disease (PD) is a neurodegenerative disorder that is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Now, researchers from Brigham and Women's Hospital (BWH) report the development of a mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. The mouse responds to L-DOPA, similarly to patients with PD. The team's study (“Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson’s Disease”) on the use of this transgenic mouse model appears in  Neuron . “α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in PD. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutati