跳至主要内容

Molecular Docking Technology, the Key Technology of Structural Molecular Biology

 Molecular biology is the science of studying life phenomena and the essence of life at the molecular level. The molecular biology technology provided by some molecular biology service organizations is a more advanced and cutting-edge technology in life science research. Molecular docking is a key technology in structural molecular biology and has played an increasingly important role in computer-aided drug design in recent years. Molecular docking technology is a computer-based analysis that can apply mathematical, biological and computer models to predict the affinity of small molecules for specific receptors.

Molecular docking technology can predict the binding affinity of new chemical entities (NCEs) or drugs based on their chemical structure. In the field of innovative drug research, computer-aided drug design technology, which combines computer technology, optimization methods and drug design, plays an important role. The research of drug molecule docking method is an important link and step of computer-aided drug molecule design.

Molecular docking refers to the placement of small molecules (ligands) on the binding sites of macromolecular targets (receptors) through computer simulation, and the continuous positioning and search for the best matching state within the binding sites according to spatial conformation and interaction. The discovery of new drugs often requires a lot of manpower and material resources, and is a very challenging process. Molecular docking is often used in drug screening. Studies have found that the docking energies of targets and ligands with different structures are different. This is because the structure of the target point is different, which changes a variety of factors that affect the docking process, resulting in a change in the docking result. Studies have shown that although the target structure is different, the order of the docking energy between the target and each ligand is the same.

With the development of science and technology, more and more protein crystal structures have been resolved, providing a large number of targets for compound screening using molecular docking technology. Simulation analysis through molecular docking technology can obtain the docking results of the candidate compound and the protein and the interaction relationship between its functional regions, thereby predicting the target point of the drug, laying a foundation for exploring the mechanism of the compound, and also for using the lead compound The development of new drugs provides a theoretical basis.

Computer-aided drug design technology is playing an increasingly important role in drug research and development with its advantages of economy, speed and efficiency. Medicilon’s Structural Biology Laboratory is equipped with a molecular cloning room and a drug discovery and screening platform based on protein crystallography to support the development of drugs based on structure, from the confirmation of new targets to the final structure confirmation. Medicilon’s structural biology platform is one of the structural biology platforms established earlier in China, and has been identified as an important new drug research and development platform by the Shanghai Municipal Government.

 Molecular biology
Molecular biology  

As a key technology of computer-aided drug design, molecular docking has become an important method in drug development. There are three main types of molecular docking technology:

(1) Rigid docking:

The conformation of the target molecule and the ligand molecule does not change during the docking process, only the spatial position and posture of the molecule change. This method is simple in calculation and fast in calculation speed. It is suitable for the calculation of docking between macromolecules with relatively large institutions, and the calculation results are not accurate enough.

(2) Semi-flexible docking:

Semi-flexible docking is a commonly used method in the process of drug screening. During the docking process, the conformation of the target molecule does not change, and the conformation of the ligand molecule changes within a certain range. This method is suitable for the docking calculation between large molecules and small molecule compounds. The calculation is small and the speed is faster.

(3) Flexible docking

The conformation of the target molecule and the ligand molecule can change during docking. The docking method has a large amount of calculation, accurate calculation, and slow speed, and is suitable for accurately studying the identification of molecules. It has been reported that the docking results obtained by treating the ligand and the receptor as a flexible structure are more accurate.

In short, in the field of drug development, molecular docking technology is widely used. On the one hand, molecular docking technology can predict the binding mode between proteins and explore the three-dimensional structure of the binding of two proteins. On the other hand, molecular docking can also be used for virtual screening of large-scale compounds. By sorting the docking results, small molecule compounds with optimal affinity can be screened, and the hypothesis of how ligands can inhibit the target protein can also be proposed. The optimization of the compound is very valuable.

Related Articles:

Molecular Biology Services from Medicilon

Medicilon’s Molecular Biology Services

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...

What is Toxicokinetics?

Toxicokinetics  is essentially the study of “how a substance gets into the body and what happens to it in the body”. Four processes are involved in toxicokinetics. The study of the kinetics (movement) of chemicals was originally conducted with pharmaceuticals and thus the term pharmacokinetics became commonly used. In addition, toxicology studies were initially conducted with drugs. However, the science of toxicology has evolved to include environmental and occupational chemicals as well as drugs. Toxicokinetics is thus the appropriate term for the study of the kinetics of all toxic substances. Frequently the terms  toxicokinetics ,  pharmacokinetics , or disposition may be found in the literature to have the same meaning. Disposition is often used in place of toxicokinetics to describe the time-course of movement of chemicals through the body (that is, how does the body dispose of a xenobiotic?). The disposition of a toxicant along with its’ biological reactivi...