跳至主要内容

 Compound stability is an important factor to consider during the early stages of drug discovery. We have a leading portfolio of compound stability services designed to help you understand the metabolic profile of your compounds.

The aim of metabolic stability study is measuring the disappearance rate of a chemical compound. The half-life, in vitro clearance measured from metabolic stability assay can be used to predict hepatic clearance, and also to evaluate dose, toxicity, oral bioavailability, etc. For instance, if a drug is rapidly metabolized when entering to the body, it may require more daily dosing to maintain its blood or tissue concentrations in order to get an ideal therapeutic effect. On the other hand, if a drug is slowly metabolized, the dose need to be adjusted and more preclinical toxicity tests should be conducted as long-time exposure may cause toxic build-up.

Many compounds with promising pharmacological characteristics never become drugs due to poor metabolic stability profiles. For example, a drug that is rapidly metabolized may not produce sufficient in vivo exposure levels or a drug that is slowly metabolized could remain in the body for extended periods leading to unwanted adverse effects.In order to provide accurate predictions of the stability of your compounds in various organs in the body, we offer a wide variety of in vitro test systems.All our assays can be ordered individually, combined or as a selection of key stability services provided in our drug candidate assessment packages to provide cost savings.



Liver Microsomal Stability

The liver is the main organ for drug metabolism in the body. Microsome, the liver subcellular fraction, is an important model for drug metabolism studies. It contains many drug metabolizing enzymes (like P450s, FMOs, and UGTs), easy to prepare, has long storing period, easy to adaptable to HTS, and can make donor pool from multiple donors to minimize the effect of interindividual variability. Medicilon provides liver microsomal stability assay which incubates microsomes with the test compound at 37°C followed by monitoring disappearance of the test compound. The results are characterized by UPLC/HR-MS/MS.

Hepatocyte Stability

Intact hepatocytes contain the cytochrome P450s (CYPs), non-P450 enzymes, and phase II enzymes such as sulfo- and glucuronosyltransferases. Therefore, hepatocyte assays can more broadly assess the overall cellular metabolism of the test compound than liver microsomal assay. Medicilon provides immortalized human liver cell line HepaRG for hepatocyte stability assays.

 

S9 Stability

S9 fraction (post-mitochondrial supernatant fraction) is another important model for drug metabolism studies. S9 fraction consists of both microsomal and cytosolic enzymes (SULT, GST, XO, ADHs, NATs) and it can be supplemented with cofactors such as UDPGA and PAPS to investigate Phase II metabolic pathways.

 

Recombinant Enzymes Stability

Medicilon uses mixture of expressed enzymes (e.g. CYP450s and UGTs) to identify which enzyme metabolizing isoforms are responsible for the metabolism of a test compound. Also, it is useful for identifying potential drug-drug interactions. This system is especially useful for studying highly stable compounds.

Contact Us:

Email : marketing@medicilon.com

Tel : +44 1223 981 792(Europe)

+82 (0)70-8269-5849(South Korea)

08044216898(Japan)

+86 021 58591500(China )

Website: https://www.medicilon.com

Related Articles:

Stability Studies of Pharmaceuticals

Microsatellite Instability Tied to Cancer Progression and Survival

Compound water solubility and stability test

Biopharmaceutical Stability Research Test

Excipient manufacturers pay attention to stability test

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential toxicity of the compou

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d

Novel Parkinson’s Therapies Possible with New Mouse Model

Parkinson's disease (PD) is a neurodegenerative disorder that is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Now, researchers from Brigham and Women's Hospital (BWH) report the development of a mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. The mouse responds to L-DOPA, similarly to patients with PD. The team's study (“Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson’s Disease”) on the use of this transgenic mouse model appears in  Neuron . “α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in PD. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutati