跳至主要内容

3D Chemokine Receptor Study Opens Door to Finding New Anti-Inflammatory Drugs

     Inflammation is a good thing when it’s fighting off infection, but too much can lead to autoimmune diseases or cancer. In efforts to dampen inflammation, scientists have long been interested in CC chemokine receptor 2 (CCR2).

 

3D Chemokine Receptor Study Opens Door to Finding New Anti-Inflammatory Drugs

 

    Scientists at the Skaggs School of Pharmacy and Pharmaceutical Sciences at the University of California San Diego have determined the 3D structure of CC chemokine receptor 2 (CCR2), a protein that sits on the surface of immune cells sensing and transmitting inflammatory signals that spur cell movement toward sites of inflammation,  simultaneously bound to two inhibitors. Understanding how these molecules fit together may better enable pharmaceutical companies to develop anti-inflammatory drugs that bind and inhibit CCR2 in a similar manner.

At present, as the pathogenesis of inflammatory and immunological diseases is unclear, there are few effective therapeutic drugs available in clinical practice. In such a context, the appropriate preclinical research techniques and models are required to help companies and researchers further develop and evaluate new drugs. Our Preclinical Pharmacodynamics Department has been deeply involved in this field for years, developing reliable animal-based efficacy evaluation models aimed at different targets and pathways, thus facilitating the clinical transformation of new drugs.

 

    CCR2 and associated signaling molecules are known to play roles in a number of inflammatory and neurodegenerative diseases, including multiple sclerosis, asthma, diabetic nephropathy, and cancer. Many drug companies have attempted to develop drugs that target CCR2, but none have yet made it to market.


   

 “So far drugs that target CCR2 have consistently failed in clinical trials,” said Tracy Handel, Ph.D., professor in the Skaggs School of Pharmacy. “One of the biggest challenges is that, to work therapeutically, CCR2 needs to be turned ‘off’ and stay off completely, all of the time. We can’t afford ups and downs in its activity. To be effective, any small-molecule drug that inhibits CCR2 would have to bind the receptor tightly and stay there. And that’s difficult to do.”

 

    Dr. Handel led the study (“Structure of CC Chemokine Receptor 2 with Orthosteric and Allosteric Antagonists”), published in Nature, with Irina Kufareva, Ph.D., project scientist at Skaggs School of Pharmacy, and Laura Heitman, Ph.D., of Leiden University. The study’s first author is Yi Zheng, Ph.D., postdoctoral researcher also at Skaggs School of Pharmacy.

 

    CCR2 spans the membrane of immune cells. Part of the receptor sticks outside the cell and part sticks inside. Inflammatory molecules called chemokines bind the external part of CCR2, and the receptor carries that signal to the inside of the cell. Inside the cell, CCR2 changes shape and binds other communication molecules, such as G proteins, triggering a cascade of activity. As a result, the immune cells move, following chemokine trails that lead them to places in the body where help is needed.

 

    In this study, the researchers used X-ray crystallography to determine the 3D structure of CCR2 with two molecules bound to it simultaneously, one at each end.

 

    That’s a huge accomplishment because, Dr. Kufareva said, “Receptors that cross the cell membrane are notoriously hard to crystallize. To promote crystallization, we needed to alter the amino acid sequence of CCR2 to make the receptor molecules assemble in an orderly fashion. Otherwise, when taken out of the cell membrane, they tend to clump together randomly.”

 

    Drs. Handel, Kufareva, and team also discovered that the two small molecules binding CCR2 turn the receptor “off” by different, but mutually reinforcing, mechanisms. One of the small molecules binds the outside face of the receptor and blocks binding of the natural chemokines that normally turn the receptor “on.” The other small molecule binds the face of the receptor inside the cell, where the G protein normally binds, preventing inflammatory signal transmission. According to Dr. Handel, the latter binding site has never been seen before.

 

    “It’s our hope that this new structure of CCR2 with two bound inhibitors will help optimize current and future drug discovery efforts,” added Dr. Kufareva.

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential toxicity of the compou

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d

Novel Parkinson’s Therapies Possible with New Mouse Model

Parkinson's disease (PD) is a neurodegenerative disorder that is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Now, researchers from Brigham and Women's Hospital (BWH) report the development of a mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. The mouse responds to L-DOPA, similarly to patients with PD. The team's study (“Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson’s Disease”) on the use of this transgenic mouse model appears in  Neuron . “α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in PD. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutati