跳至主要内容

Five Inflammatory Diseases Erupt from Common Genetic Ground

  It isn’t exactly earth-shaking news that a number of inflammatory diseases, including Crohn’s disease and ulcerative colitis, commonly occur together in individuals and families. Also, it has long been suspected that these inflammatory processes emanate from a shared fault, either environmental or genetic. But now, thanks to a global survey, the subterranean connection has finally been revealed. It is mainly genetic.



At present, as the pathogenesis of inflammatory and immunological diseases is unclear, there are few effective therapeutic drugs available in clinical practice. In such a context, the appropriate preclinical research techniques and models are required to help companies and researchers further develop and evaluate new drugs. Our Preclinical Pharmacodynamics Department has been deeply involved in this field for years, developing reliable animal-based efficacy evaluation models aimed at different targets and pathways, thus facilitating the clinical transformation of new drugs.

   

        The genetic substratum for the five diseases—ankylosing spondylitis, Crohn’s disease, ulcerative colitis, psoriasis, and primary sclerosing cholangitis—was unearthed in a study that was led by scientists from Queensland University of Technology (QUT), Brisbane, Australia, and Christian-Albrechts-University, Kiel,  Germany. These scientists, who pieced together information provided by 50 different research centers from around the world, ultimately determined that the five diseases have common genetic ground, and that the ground consists of hundreds of genes.

   

        The details appeared March 14 in the journal Nature Genetics, in an article entitled, “Analysis of Five Chronic Inflammatory Diseases Identifies 27 New Associations and Highlights Disease-Specific Patterns at Shared Loci.” The article describes how the researchers combined Immunochip genotype data for 52,262 cases and 34,213 controls of European ancestry, drawing from what are “currently the largest available genetic data sets in five clinically related seronegative immune-driven phenotypes,” to explore the extent of sharing of genetic susceptibility loci.


   

        “Using high-density genotype data from more than 86,000 individuals of European ancestry, we identified 244 independent multidisease signals, including 27 new genome-wide significant susceptibility loci and 3 unreported shared risk loci,” wrote the study’s authors. “Complex pleiotropy was supported when contrasting multidisease signals with expression data sets from human, rat, and mouse together with epigenetic and expressed enhancer profiles. The comorbidities among the five immune diseases were best explained by biological pleiotropy rather than heterogeneity.”

   

        According to Matthew Brown, M.D., a co-senior author of the study and a professor at QUT’s Institute of Health and Biomedical Innovation, the new gene discoveries pointed to some potential new therapies, including agents already in use for other diseases which can now be trialed in these conditions very promptly.

   

        “The discoveries have shed new light onto the causes of these diseases, such as identifying genetic risk variants which most likely work by affecting the bacteria present in the gut, in turn causing inflammation in joints, the liver or the gut itself,” noted Professor Brown. “These study findings are a major leap forward in our understanding of these common but difficult-to-treat diseases.”

   

        The diseases affect about 3% of the world’s population and are often debilitating and difficult to treat. That these diseases could be traced to shared genetic risk factors, rather than found to give rise to each other, lends credence to the study’s overall approach—looking across the genetics of multiple diseases to resolve overlapping associations into discrete pathways, and to explore details of apparently shared etiologies.

   

    “It has been known for over 50 years these conditions frequently occur together in individuals and families. We now know this is mainly because the genes involved affect the risk of many diseases, and that the diseases are therefore very similar in their underlying causes, even if they present in such different ways,” concluded Professor Brown. “This research has pointed us to several different potential therapeutic targets for these diseases, for which there is a huge global need for better therapies.”

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...

What is Toxicokinetics?

Toxicokinetics  is essentially the study of “how a substance gets into the body and what happens to it in the body”. Four processes are involved in toxicokinetics. The study of the kinetics (movement) of chemicals was originally conducted with pharmaceuticals and thus the term pharmacokinetics became commonly used. In addition, toxicology studies were initially conducted with drugs. However, the science of toxicology has evolved to include environmental and occupational chemicals as well as drugs. Toxicokinetics is thus the appropriate term for the study of the kinetics of all toxic substances. Frequently the terms  toxicokinetics ,  pharmacokinetics , or disposition may be found in the literature to have the same meaning. Disposition is often used in place of toxicokinetics to describe the time-course of movement of chemicals through the body (that is, how does the body dispose of a xenobiotic?). The disposition of a toxicant along with its’ biological reactivi...