跳至主要内容

Inflammatory Response to Malaria Infection Sabotages Immune System Protection

  Malaria parasites cause an inflammatory reaction that sabotages our body’s ability to protect itself against the deadly disease, scientists have found for the first time.



    The finding opens up the possibility of improving malaria vaccines by boosting key immune cells needed for long-lasting immunity. This could even include vaccines that have previously been ineffective in clinical trials.


    Researchers found that the same inflammatory molecules that drive the immune response in clinical and severe malaria also prevent the body from developing protective antibodies against the parasite.

    

At present, as the pathogenesis of inflammatory and immunological diseases is unclear, there are few effective therapeutic drugs available in clinical practice. In such a context, the appropriate preclinical research techniques and models are required to help companies and researchers further develop and evaluate new drugs. Our Preclinical Pharmacodynamics Department has been deeply involved in this field for years, developing reliable animal-based efficacy evaluation models aimed at different targets and pathways, thus facilitating the clinical transformation of new drugs.

    

      “With many infections, a single exposure to the pathogen is enough to induce production of antibodies that will protect you for the rest of your life,” explains co-senior author Diana Hansen, Ph.D., laboratory head in the division of infection and immunity at the Walter and Eliza Hall Institute of Medical Research (WEHI). “However with malaria it can take up to 20 years for someone to build up sufficient immunity to be protected. During that time, people exposed to malaria are susceptible to reinfection and become sick many times, as well as spreading the disease.”


    Now, Dr. Hansen and her colleagues at WEHI have revealed how the malaria parasite causes an inflammatory reaction that sabotages the body’s ability to protect itself against the infection. The investigators are hopeful that their findings will lead to novel vaccine possibilities or boost existing therapies by enhancing critical immune cells required for lasting immunity.

 

    The findings from this study were published recently in Cell Reports through an article entitled “Severe Malaria Infections Impair Germinal Center Responses by Inhibiting T Follicular Helper Cell Differentiation.”


    Interestingly, the WEHI researchers found that the same inflammatory molecules that drive the immune response in clinical and severe malaria also prevent the body from developing protective antibodies against the parasite. The scientists note that this isthe first time it had been explicitly shown why the immune system fails to develop immunity during malaria infections.


    Traditionally, malaria infections have been notoriously difficult to manage because the body is awful at developing long-lasting immunity to the parasite—a scenario that has hindered vaccine development for decades.

 

    “This was complicated by the fact that we didn’t know whether it was the malaria parasite itself or the inflammatory reaction to malaria that was actually inhibiting the ability to develop protective immunity,” Dr. Hansen notes. “We have now shown that it was a double-edged sword: The strong inflammatory reaction that accompanies and, in fact, drives severe clinical malaria is also responsible for silencing the key immune cells needed for long-term protection against the parasite.”


    The WEHI researchers discovered that inflammatory molecules that were being released in response to the parasitic infection were preventing the immune system from developing protective antibodies.


    “Long-term immunity to malaria and other pathogens requires antibody responses,” states co-senior author Axel Kallies, Ph.D., laboratory head in the division of infection and immunity at WEHI. “Specialized immune cells called helper T cells join forces with B cells to generate these protective antibodies. However, we showed that during malaria infection critical inflammatory molecules actually arrest the development of helper T cells and, therefore, the B cells don’t get the necessary instructions to make antibodies.”


    

      The researchers are excited by their findings and believe that their results could lead to newer, more efficient therapeutics to help control malaria infections, especially in the area of vaccine development.


    “This research opens the door to therapeutic approaches to accelerate development of protective immunity to malaria and improve the efficacy of malaria vaccines,” Dr. Hansen says. “Until now, malaria vaccines have had disappointing results. We can now see a way of improving these responses, by tailoring or augmenting the vaccine to boost development of helper T cells that will enable the body to make protective antibodies that target the malaria parasites.”

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...

What is Toxicokinetics?

Toxicokinetics  is essentially the study of “how a substance gets into the body and what happens to it in the body”. Four processes are involved in toxicokinetics. The study of the kinetics (movement) of chemicals was originally conducted with pharmaceuticals and thus the term pharmacokinetics became commonly used. In addition, toxicology studies were initially conducted with drugs. However, the science of toxicology has evolved to include environmental and occupational chemicals as well as drugs. Toxicokinetics is thus the appropriate term for the study of the kinetics of all toxic substances. Frequently the terms  toxicokinetics ,  pharmacokinetics , or disposition may be found in the literature to have the same meaning. Disposition is often used in place of toxicokinetics to describe the time-course of movement of chemicals through the body (that is, how does the body dispose of a xenobiotic?). The disposition of a toxicant along with its’ biological reactivi...