跳至主要内容

Active metabolomics: new pathways to uncovering bioactive metabolites

Active metabolomics has become a powerful and disruptive research tool, taking our understanding of bioactive metabolites to a whole new level. This brand-new research method uses high-throughput and high-sensitivity analysis technology to conduct comprehensive qualitative and quantitative measurements of all metabolites in biological systems and analyze their interrelationships to gain a deeper understanding of biological systems.

Bioactive metabolites, including various enzymes, hormones, etc., are indispensable components in life activities. However, precise identification of these metabolites is not easy in the face of complex biological systems. Traditional biochemical techniques often can only study a specific metabolite due to time and cost considerations. On the contrary, active metabolomics breaks this limitation and provides a global perspective, allowing us to observe and analyze all active metabolites in organisms.

Active metabolomics first extracts and analyzes biological samples to generate a large amount of data. Subsequently, through data processing and bioinformatics analysis, various active metabolites were identified and their interrelationships were established. Technologies used in this process include mass spectrometry, nuclear magnetic resonance (NMR), high performance liquid chromatography (HPLC), and gas chromatography (GC).


In addition, data analysis and interpretation have always been an important challenge in active metabolomics. In recent years, many scholars have conducted in-depth research in this field, developed new statistical methods and calculation models, and continuously improved the accuracy and efficiency of data processing.

Active metabolomics provides us with a new perspective that allows us to gain a deeper understanding of the origin, properties, and mechanisms of action of bioactive metabolites. This will have a profound impact on future biological research and provide us with new means and new paths for understanding the mysteries of life.

The MetID team of Medicilon is composed of experienced scientists. We provide fast and reliable in vivo and in vitro MetID and reactive metabolite capture services. We also support new drug screening and domestic and oversees IND filings. Since the establishment of MetID team, Medicilon has successfully completed multiple different types of research projects for clients, including challenging peptide MetID research.

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential toxicity of the compou

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d

Novel Parkinson’s Therapies Possible with New Mouse Model

Parkinson's disease (PD) is a neurodegenerative disorder that is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Now, researchers from Brigham and Women's Hospital (BWH) report the development of a mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. The mouse responds to L-DOPA, similarly to patients with PD. The team's study (“Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson’s Disease”) on the use of this transgenic mouse model appears in  Neuron . “α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in PD. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutati