跳至主要内容

Liquid Chromatography-Mass Spectrometry in Metabolomics: Identification and Quantification of Metabolites

The field of metabolomics, particularly the identification and quantification of metabolites, has been greatly expedited by advancements in liquid chromatography-mass spectrometry (LC-MS) technology. LC-MS combines the physical separation properties of liquid chromatography with the mass analysis capabilities of mass spectrometry, thus rendering an unparalleled potential for accurate profiling of metabolites in biological samples.

The power of metabolomics lies in its ability to survey the complete set of metabolites or the metabolome in biological systems. However, the extensive diversity of the metabolome, characterized by wide-ranging physicochemical properties, presents a formidable challenge for any single analytical methodology. That’s where LC-MS comes into play.

In LC-MS, liquid chromatography separates complex biological samples into individual metabolite components, while mass spectrometry provides exact mass measurements facilitating the identification and quantification of each compound. Paired together, these two methodologies enable comprehensive and high-resolution metabolomic analyses.

The LC-MS workflow starts with meticulous sample preparation, where metabolites are extracted and purified from the biological samples. Upon successful extraction, the metabolites are resolved using the liquid chromatography column, followed by their detection and mass analysis through the mass spectrometer.


One key advantage of LC-MS in metabolomics is its ability to provide both molecular weight data and structural information about metabolites, supporting accurate identification and quantification. The integration of MS with LC can also provide the sensitivity necessary for detecting metabolites present at very low concentrations.

While data generated from LC-MS is complex, advancements in data processing software and bioinformatics tools have made deciphering and analyzing this information more manageable and accessible. By visualizing and interpreting LC-MS generated data, we can get a deeper understanding of metabolic pathways and mechanisms in various biological systems.

In conclusion, LC-MS, as an indispensable tool in metabolomics, has opened up new avenues for exploring the wonders of the metabolome and advancing our understanding of how biomolecules interact and operate within biological systems. Its powerful capabilities in metabolite separation, identification, and quantification have provided tremendous opportunities in advancing research in various fields including biomedical, environmental, and agricultural science.

The MetID team of Medicilon is composed of experienced scientists. We provide fast and reliable in vivo and in vitro MetID and reactive metabolite capture services. We also support new drug screening and domestic and oversees IND filings. Since the establishment of MetID team, Medicilon has successfully completed multiple different types of research projects for clients, including challenging peptide MetID research.

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential toxicity of the compou

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d

Novel Parkinson’s Therapies Possible with New Mouse Model

Parkinson's disease (PD) is a neurodegenerative disorder that is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Now, researchers from Brigham and Women's Hospital (BWH) report the development of a mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. The mouse responds to L-DOPA, similarly to patients with PD. The team's study (“Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson’s Disease”) on the use of this transgenic mouse model appears in  Neuron . “α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in PD. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutati