跳至主要内容

Unraveling Metabolomics Through Liquid Chromatography-Mass Spectrometry: Identification and Quantification of Metabolites

 Liquid Chromatography-Mass Spectrometry (LC-MS) is a signature technology in metabolomics used for the precise identification and quantification of metabolites. Metabolomics, the comprehensive analysis of metabolites in a biological system, contributes to the understanding of an organism’s physiology and pathology. Indeed, LC-MS as a method in metabolomics holds the power to fuel discoveries in manifold scientific domains.

The journey of studying metabolites using LC-MS begins with sample preparation where metabolites are extracted from their native biological matrices. The aim is to retain the structural integrity and relative concentration of the metabolites in the sample.



The prepared sample advances to the liquid chromatography component of the system. The purpose of this stage is to separate the plethora of metabolites present in the sample based on characteristics like polarity, charge, and size. Considering the complexity and diversity of a typical metabolome, the separation step is crucial for clearing the path to clear, unambiguous metabolite identification.

Post separation, the metabolites reach the mass spectrometry unit for detection. The principles of mass spectrometry are applied here to differentiate metabolites based on their mass-to-charge ratio. The combined effect of both these processes leads to the creation of a unique fingerprint for each metabolite - attributing to its subsequent identification and quantification.

One salient feature of LC-MS-based metabolomics studies is its ability to generate qualitative and quantitative information about metabolites simultaneously. Additionally, its sensitivity paves the way to detect even trace concentrations of metabolites, thus contributing to a comprehensive representation of the metabolome.

However, to translate raw LC-MS data into meaningful interpretations, the use of high-end computational tools is required for data processing. Advanced statistical models and bioinformatics tools support the analysis of the complex LC-MS data, hence revealing subtle yet meaningful differences between metabolomic profiles.

In summary, LC-MS-based metabolomics is a robust approach for the unambiguous identification and quantification of metabolites, serving as a window to explore the intricate metabolic pathways within biological systems. This tool has far-reaching consequences not only in improving our fundamental understanding of life processes but also holds promise in areas such as disease diagnostics, biotechnology, nutrition research, and environmental sciences.

The MetID team of Medicilon is composed of experienced scientists. We provide fast and reliable in vivo and in vitro MetID and reactive metabolite capture services. We also support new drug screening and domestic and oversees IND filings. Since the establishment of MetID team, Medicilon has successfully completed multiple different types of research projects for clients, including challenging peptide MetID research.

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential toxicity of the compou

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d

Novel Parkinson’s Therapies Possible with New Mouse Model

Parkinson's disease (PD) is a neurodegenerative disorder that is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Now, researchers from Brigham and Women's Hospital (BWH) report the development of a mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. The mouse responds to L-DOPA, similarly to patients with PD. The team's study (“Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson’s Disease”) on the use of this transgenic mouse model appears in  Neuron . “α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in PD. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutati