跳至主要内容

Unraveling Metabolomics Through Liquid Chromatography-Mass Spectrometry: Identification and Quantification of Metabolites

 Liquid Chromatography-Mass Spectrometry (LC-MS) is a signature technology in metabolomics used for the precise identification and quantification of metabolites. Metabolomics, the comprehensive analysis of metabolites in a biological system, contributes to the understanding of an organism’s physiology and pathology. Indeed, LC-MS as a method in metabolomics holds the power to fuel discoveries in manifold scientific domains.

The journey of studying metabolites using LC-MS begins with sample preparation where metabolites are extracted from their native biological matrices. The aim is to retain the structural integrity and relative concentration of the metabolites in the sample.



The prepared sample advances to the liquid chromatography component of the system. The purpose of this stage is to separate the plethora of metabolites present in the sample based on characteristics like polarity, charge, and size. Considering the complexity and diversity of a typical metabolome, the separation step is crucial for clearing the path to clear, unambiguous metabolite identification.

Post separation, the metabolites reach the mass spectrometry unit for detection. The principles of mass spectrometry are applied here to differentiate metabolites based on their mass-to-charge ratio. The combined effect of both these processes leads to the creation of a unique fingerprint for each metabolite - attributing to its subsequent identification and quantification.

One salient feature of LC-MS-based metabolomics studies is its ability to generate qualitative and quantitative information about metabolites simultaneously. Additionally, its sensitivity paves the way to detect even trace concentrations of metabolites, thus contributing to a comprehensive representation of the metabolome.

However, to translate raw LC-MS data into meaningful interpretations, the use of high-end computational tools is required for data processing. Advanced statistical models and bioinformatics tools support the analysis of the complex LC-MS data, hence revealing subtle yet meaningful differences between metabolomic profiles.

In summary, LC-MS-based metabolomics is a robust approach for the unambiguous identification and quantification of metabolites, serving as a window to explore the intricate metabolic pathways within biological systems. This tool has far-reaching consequences not only in improving our fundamental understanding of life processes but also holds promise in areas such as disease diagnostics, biotechnology, nutrition research, and environmental sciences.

The MetID team of Medicilon is composed of experienced scientists. We provide fast and reliable in vivo and in vitro MetID and reactive metabolite capture services. We also support new drug screening and domestic and oversees IND filings. Since the establishment of MetID team, Medicilon has successfully completed multiple different types of research projects for clients, including challenging peptide MetID research.

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential tox...

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d...

Enzyme Activity Assay Service

  Enzymatic assay Lance Assay Alphascreen Assay Z’-LYTE Assay Adapta Assay Kinase-Glo Assay ADP-Glo Assay Ligand Binding Assay ELISA Assay HTRF Assay Enzyme activity assays  are laboratory methods for measuring enzymatic activity. They are vital for the study of enzyme kinetics and enzyme inhibition. Enzyme units : Amounts of enzymes can either be expressed as molar amounts, as with any other chemical, or measured in terms of activity, in enzyme units. Medicilon provides various  enzyme activity assays  for  kinases , phosphatases, proteinases, deacetylase, peptidase, esterase, and other enzymes. Our line of well-characterized immunoassays and biochemical kits ensures accurate and reproducible results. Enzyme is a  large category of bio-molecules  that catalyze various biological processes including metabolic processes, cellular signaling and regulation, cell division and apoptosis. Enzymatic reactions convert substrate molecules into chemically modifi...