跳至主要内容

Altered Levels of Neonatal Inflammatory Markers Associated with Childhood Leukemia

 A new study finds that children with B-cell precursor acute lymphoblastic leukemia (ALL) have an immune profile at birth that differs from matched controls. Although the cause of ALL remains unknown, this finding lends support to the hypothesis that a dysregulated immune function in combination with certain postnatal environmental exposures leads to the development of the disease.

 

A team at the Statens Serum Institut and University Hospital Rigshospitalet in Copenhagen, Denmark published a paper titled “Neonatal Inflammatory Markers Are Associated with Childhood B-cell Precursor Acute Lymphoblastic Leukemia” in Cancer Research that supports this hypothesis.

 

 

The researchers, led by Henrik Hjalgrim M.D., Ph.D., consultant, department of epidemiology research at Statens Serum Institut, used data from Denmark’s Neonatal Screening Biobank and nationwide registers to conduct a population-based case-control study. They measured the concentrations of inflammatory markers, including cytokines and acute inflammatory proteins, on neonatal dried blood spots from 178 childhood ALL patients and 178 matched leukemia-free controls. They chose children born in Denmark from 1995 to 2008, who were diagnosed with B-cell precursor ALL at ages 1–9 years.

At present, as the pathogenesis of inflammatory and immunological diseases is unclear, there are few effective therapeutic drugs available in clinical practice. In such a context, the appropriate preclinical research techniques and models are required to help companies and researchers further develop and evaluate new drugs. Our Preclinical Pharmacodynamics Department has been deeply involved in this field for years, developing reliable animal-based efficacy evaluation models aimed at different targets and pathways, thus facilitating the clinical transformation of new drugs.

The team found that neonatal concentrations of eight detectable inflammatory markers were statistically significantly different in children later diagnosed with B-cell precursor acute lymphoblastic leukemia (ALL) when compared with controls. The authors said that they choose these particular markers to “provide a broad picture of the neonatal immune response.”

More specifically, children who developed B-cell precursor ALL had significantly lower neonatal concentrations of IL8, soluble IL6 receptor (sIL6R) α, TGFβ1, monocyte chemotactic protein (MCP)-1, and C-reactive protein (CRP) when compared with matched controls. In addition, the children with ALL had higher concentrations of IL6, IL17, and IL18. Concentrations of IL10 were below the detection level for both patients and controls.

 

The first author on the paper, Signe Holst Søegaard, a graduate student in the department of epidemiology, Statens Serum Institut, says that their findings “suggest that children who develop ALL are immunologically disparate already at birth.” This may link to other observations suggesting that children who develop ALL respond differently to infections in early childhood, potentially promoting subsequent genetic events required for transformation to ALL, or speculations that they are unable to eliminate preleukemic cells.”

 

In addition, the authors found that “birth order (IL18 and CRP), gestational age (sIL6Rα, TGFβ1, and CRP), and sex (sIL6Rα, IL8, and CRP), but not maternal age, infections during pregnancy, birth weight nor mode of delivery were significantly associated with the neonatal concentrations of inflammatory markers.” Søegaard adds that “we demonstrated that several previously shown ALL risk factors, namely birth order, gestational age, and sex were associated with the neonatal concentrations of inflammatory markers.”

 

Although these findings raise the possibility of ALL risk factors acting partly through prenatal programming of immune function, the authors point that their study “does not inform about the nature of the associations observed, i.e., whether they are causal or consequential.”

 

However, the role of a child’s baseline immune characteristics in the development of ALL opens up an important area of research that could lead to tools that predict the development of childhood ALL, allowing for both the targeting of predisposed children and the development of treatments through early immune modulation.

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

The Launch Meeting was Held by Medicilon and DAC Biotech of the Contract Research on ADC Preclinical Study

  Chuansha, Shanghai, Nov. 8th, 2019 — Medicilon held the launch meeting with Hangzhou DAC Biotech Co., Ltd to initiate the   preclinical study   of the antibody-drug-conjugate (ADC)  DXC005, including the   pharmacology study ,   DMPK study   and the   safety evaluation . Medicilon has previously completed integrated  preclinical research  on ADC drugs cooperating with DAC Biotech and other companies. Two of them has been approved by NMPA and entered Phase I clinical trials. About Hangzhou DAC Biotech Co., Ltd Hangzhou DAC Biotech, Co., Ltd was officially registered in HEDA Area, Hangzhou City, Zhejiang Province, China around the end of Year 2012, and is located nearby the bank of beautiful Qiantang River. The company focuses on developing conjugate of monoclonal antibody and small molecular cytotoxic drug, both of which are banded together with smart linkers. About Antibody-Drug-Conjugate (ADC) ADCs ...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...