跳至主要内容

Jumping Genes May Play An Important Role in GI Cancers

   Gastrointestinal cancer.webp

     

 Gastrointestinal cancer (GI cancer) refers to malignant conditions of the gastrointestinal tract (GI tract) and accessory organs of digestion, including the esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus.  The studies state that a jumping gene may play a critical role in the GI cancer.

 

Medicilon can provide various animal models (including renal failure model, anemia animal model, gastric acid secretion animal model, and gastric ulcer model) to test drug effectiveness according to client needs. We can conduct tests on typical digestive system diseases, including gastric acid secretions, gastric ulcers, and renal failure, using rats as subjects.

        Results of a trio of studies done on human cancer tissue biopsies have added to growing evidence that a so-called jumping gene called LINE-1 is active during the development of many gastrointestinal cancers. The John Hopkins scientists who conducted the studies caution there is no proof that the numerous new “insertions” of these rogue genetic elements in the human genome actually cause cancers, but they say their experiments do suggest that these transposons might one day serve as a marker for early cancer diagnosis.  

        Collectively, the studies focus on insertions of a stretch of DNA, the LINE-1 transposon, that, as its name suggests, can produce copies of itself that hop into new areas of the genome and may interrupt normal DNA sequences. This particular genetic interloper, the investigators say, has been in the human genome for so long that an estimated 17% of it is made up of LINE-1 copies, the vast majority of which are now “rusty hulks” of their former selves, unable to move at all. A few, however, are still mobile. Summaries of two of the studies appeared in Nature Medicine and Genome Research, and a report on the third appears this week in PNAS.  

   
 

        Researchers previously reported cases in which new LINE-1 insertions disabled cancer-fighting genes inside tumors, but no one knew how common it was for jumping genes to play a role in cancer development, says Haig Kazazian, M.D., professor of molecular biology and genetics at the Johns Hopkins University School of Medicine’s McKusick-Nathans Institute for Genetic Medicine, who participated in two of the studies. “A challenge we had to overcome to begin to answer that question was detecting new copies of LINE-1 when the human genome already contains so many. It was like finding a needle in a haystack,” he adds.  

   
 

        After Dr. Kazazian and then-graduate student Adam Ewing devised a method to find LINE-1 insertions using genetic sequencing technology, the two worked with research fellow Szilvia Solyom, Ph.D., and other colleagues to analyze the insertions in several types and stages of gastrointestinal cancer tissues biopsies. They compared the DNA insertions they found in colon, pancreatic, and gastric cancer to those in healthy tissue from the same people.  

   
 

        Results showed that new insertions of the still-mobile LINE-1 transposons tended to occur early in cancer development, Dr. Solyom says. For example, she says, a total of 29 new insertions were found in colon polyps, and 24 new insertions were found in samples from seven patients with pancreatic cancer. Of those, 13 were found in both the primary cancer and metastasized cancer cells, indicating that they had occurred before the tumor metastasized. The group’s findings about the timing of insertions in cancer appear in the Genome Research article.  

   
 

        In the study that appears in Nature Medicine, researchers led by Kathleen Burns, M.D., Ph.D., an associate professor of pathology at Johns Hopkins, homed in on LINE-1 insertions in pancreatic cancers. Using tissues from autopsies of 22 people with pancreatic cancer, they compared insertions in normal tissues, primary tumors, and metastases. Of these, 21 of the cancers had LINE-1 insertions that were not present in the patients’ healthy tissue, notes Dr. Burns, and there tended to be more insertions in the metastasized tumors than in the primary tumors, indicating that the insertions are occurring concurrently with cancer progression.  

   
 

        In the third study, graduate student Tara Doucet in Dr. Kazazian’s laboratory and others examined LINE-1 insertions in esophageal cancer and a condition known as Barrett’s esophagus that is sometimes a precursor to cancer. They found new insertions in some, but not all of both patients whose Barrett’s esophagus had not progressed to cancer after 15 or more years, and patients with both Barrett’s esophagus and cancer.  

   
 

        “The key question is whether these insertions are driving cancer development or whether they are just a byproduct of cancer,” says Dr. Kazazian. To help answer that question, his group hopes to analyze the genomes of individual cells to see whether most insertions seen in cancer cells also crop up in normal cells.  

   
 

        Whatever LINE-1’s role in cancer biology turns out to be, adds Dr. Burns, the fact that the transposons are more active in gastrointestinal cancer cells than in healthy cells could eventually make them a powerful tool for early detection.  

   
 

        We will see if more studies or researches saying that the LINE-1 insertions are suitable to fight for the GI cancer in the future.
 

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

The Launch Meeting was Held by Medicilon and DAC Biotech of the Contract Research on ADC Preclinical Study

  Chuansha, Shanghai, Nov. 8th, 2019 — Medicilon held the launch meeting with Hangzhou DAC Biotech Co., Ltd to initiate the   preclinical study   of the antibody-drug-conjugate (ADC)  DXC005, including the   pharmacology study ,   DMPK study   and the   safety evaluation . Medicilon has previously completed integrated  preclinical research  on ADC drugs cooperating with DAC Biotech and other companies. Two of them has been approved by NMPA and entered Phase I clinical trials. About Hangzhou DAC Biotech Co., Ltd Hangzhou DAC Biotech, Co., Ltd was officially registered in HEDA Area, Hangzhou City, Zhejiang Province, China around the end of Year 2012, and is located nearby the bank of beautiful Qiantang River. The company focuses on developing conjugate of monoclonal antibody and small molecular cytotoxic drug, both of which are banded together with smart linkers. About Antibody-Drug-Conjugate (ADC) ADCs ...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...