跳至主要内容

"Leaky Gut" with Age Improved through Dietary Restriction

 Flies eating a Spartan diet are protected from leaky gut and the systemic inflammation associated with it as they age. Conversely, flies on a rich Atkins-like diet are more prone to developing intestinal permeability, a condition linked to a variety of human conditions including inflammatory bowel disease.

At present, as the pathogenesis of inflammatory and immunological diseases is unclear, there are few effective therapeutic drugs available in clinical practice. In such a context, the appropriate preclinical research techniques and models are required to help companies and researchers further develop and evaluate new drugs. Our Preclinical Pharmacodynamics Department has been deeply involved in this field for years, developing reliable animal-based efficacy evaluation models aimed at different targets and pathways, thus facilitating the clinical transformation of new drugs.

Publishing in PLOS Genetics through an article titled “Dietary restriction improves intestinal cellular fitness to enhance gut barrier function and lifespan in D. melanogaster,” researchers from the Kapahi lab at the Buck Institute show that gaps in the intestinal barrier are caused by an age-related increase in the death of intestinal epithelial cells, also known as enterocytes.

 

“The integrity of our gut declines with age and problems with intestinal permeability are now suspect in chronic inflammation, metabolic diseases, and even neurological diseases like Alzheimer’s,” explained senior study investigator Pankaj Kapahi, Ph.D., a professor at the Buck Institute. “The possibility that dietary restriction, or the use of dietary restriction mimetics, could help prevent this decline in humans opens a new area of research that could influence health span and longevity.”

 

Interestingly, the Buck researchers observed that levels of dMyc act as a barometer of cellular fitness in enterocytes, post-mitotic intestinal cells. They found that cells that have too little dMyc get eliminated by neighboring cells through a process termed “cell competition” in an attempt to maintain gut health.

 

“We demonstrated that dietary restriction (DR) slows the age-related decline in intestinal integrity by enhancing enterocyte cellular fitness through up-regulation of dMyc in the intestinal epithelium,” the authors wrote. “Reduction of dMyc in enterocytes induced cell death, which leads to increased gut permeability and reduced lifespan upon DR. Genetic mosaic and epistasis analyses suggest that cell competition, whereby neighboring cells eliminate unfit cells by apoptosis, mediates cell death in enterocytes with reduced levels of dMyc.”

 

“Levels of dMyc naturally decline with age in enterocytes, leading to excessive cell loss and thus a leaky gut,” added lead study investigator Kazutaka Akagi, Ph.D., a former postdoc in Dr. Kapahis laboratory and who now runs his own lab at the National Center for Geriatrics and Gerontology in Aichi, Japan. “In our study, this decline in dMyc was enhanced by the rich diet, while dietary restriction maintained dMyc level in the flies, preventing leaky gut and extending the lifespan of the animals.”

 

Finally, the research team looked at the role of dysbiosis, an imbalance in the intestinal bacteria or microbiome of the flies, as a potential contributor to leaky gut. Even though dysbiosis has been proposed as a leading cause of leaky gut, researchers found that removing intestinal bacteria with antibiotics conferred only minimal protection to the animals and did not prevent age-related damage to enterocytes.

 

“The intestinal epithelium is affected by everything that moves through the gut. It would make sense that diet would have a major impact on the health of those cells, especially over a lifetime of eating,” Dr. Kapahi concluded. “While we understand the interest in the role of the microbiome, we think that diet may ultimately be the primary driver in cellular changes leading to leaky gut.”

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential toxicity of the compou

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d

Novel Parkinson’s Therapies Possible with New Mouse Model

Parkinson's disease (PD) is a neurodegenerative disorder that is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Now, researchers from Brigham and Women's Hospital (BWH) report the development of a mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. The mouse responds to L-DOPA, similarly to patients with PD. The team's study (“Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson’s Disease”) on the use of this transgenic mouse model appears in  Neuron . “α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in PD. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutati