跳至主要内容

Cancer Xenograft Models

Cancer Xenograft Models Introduction

Mouse models of cancer have consistently been used to determine the in vivo activity of new anti-cancer therapeutics prior to clinical development and testing in humans.

The most common models are xenografts of human tumors and cell lines grown subcutaneously in immunodeficient mice such as athymic (nude) or severe combined immune deficient (SCID) mice. These mouse strains exhibit very high take rates for xenografts, making them ideal hosts for in vivo propagation of human tumor cells.

Xenograft tumors are usually established via subcutaneous inoculation of a predetermined number of tumor cells into the flank of nude miceXenograft models are commonly used to determine ideal drug dosing, treatment schedules, and routes of drug administration that maximize anti-tumor efficacy and therapeutic window. The following are a few examples of cancer xenograft models performed.

Cancer Xenograft Models

Cancer Xenograft Models

            Medicilon’s Tumor Models Service

Medicilon boasts nearly 300 tumor evaluation models. At the same time, we are empowering innovative therapies to comprehensively evaluate and study immuno-oncology. We have completed model establishment and efficacy evaluation of immuno-therapies such as CAR-T, TCR-T, CAR-NK, oncolytic virus, antibody (monoclonal antibody, double antibody, polyclonal antibody, etc.), siRNA, AAV.

Tumor Animal Model Medicilon Has Established:

 ❖ PDX Models

 ❖ Transgenic Models

 ❖ Humanized Mouse Models

 ❖ Syngeneic Mouse Models

 ❖ Orthotopic Cancer Models

 ❖ Xenograft Models

Xenograft Protocol

Human cancer cells were injected subcutaneously into the right flank of 8 week old female NU NU nude mice (Crl:NU-Foxn1nu):

  • ASPC-1 human pancreatic cancer cells
  • HCT-116 human colon cancer cells
  • A549 lung cancer cells
  • SKOV-3 ovarian cancer cells

Tumor size measurements were initiated 8 days post inoculation and monitored three times per week.

Tumor measurements were evaluated using calipers; tumor size was calculated using the following formula: MIN (L:W)2 x MAX(L:W)/2. Data are plotted as mean tumor volume +/- standard error of the mean.

Cancer Xenograft Models Tomur VolumeCancer Xenograft Models MedicilonCancer Xenograft Models SKOV-3

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...

What is Toxicokinetics?

Toxicokinetics  is essentially the study of “how a substance gets into the body and what happens to it in the body”. Four processes are involved in toxicokinetics. The study of the kinetics (movement) of chemicals was originally conducted with pharmaceuticals and thus the term pharmacokinetics became commonly used. In addition, toxicology studies were initially conducted with drugs. However, the science of toxicology has evolved to include environmental and occupational chemicals as well as drugs. Toxicokinetics is thus the appropriate term for the study of the kinetics of all toxic substances. Frequently the terms  toxicokinetics ,  pharmacokinetics , or disposition may be found in the literature to have the same meaning. Disposition is often used in place of toxicokinetics to describe the time-course of movement of chemicals through the body (that is, how does the body dispose of a xenobiotic?). The disposition of a toxicant along with its’ biological reactivi...