跳至主要内容

Suicide Cells in Tumor Environment Can Drive Metastasis

  It’s an appealing idea: Eliminate the cells that support a tumor, and maybe the tumor will, in a manner of speaking, come tumbling down. But what if the tumor remains standing? Even worse, what if the tumor is soon accompanied by spreading metastasis?

    Such unexpected developments were in fact observed in a study conducted by researchers based at Massachusetts General Hospital (MGH). According to these researchers, the consequences of inducing the self-destruction of tumor-support cells crucially depend on timing.

    Tumor support cells, or cancer-associated fibroblasts (CAFs), may be engineered to carry so-called suicide genes. Because the genes can be activated by means of a small molecule inducer, they can be triggered at will. Such control is enormously convenient in cancer research. For example, it can enable researchers to eliminate CAFs at defined moments in tumor progression.

    Selectively orchestrating the death of CAFs from afar, the MGH researchers investigated whether targeting CAFs could limit the growth of breast cancer tumors implanted in mice. The MGH researchers bioengineered CAFs to carry a genetic “kill switch.” These cells were designed to die when exposed to a compound that was not toxic to the surrounding cells.


    The details of this work appeared February 19 in the journal Scientific Reports, in an article entitled “Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis.”

    “Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation,” wrote the article’s authors.

We can provide various xenograft models to test the effectiveness of drugs according to our clients' requirements. Typical orthotopic diseases include head and neck cancer, lung cancer, breast cancer, gastric cancer and pancreatic cancer, with mice, rats and hamsters as test subjects.

bsp;“Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone.”

    The MGH team, which was led by Biju Parekkadan, Ph.D., chose two different stages of tumor growth in which the CAFs were killed off after the tumor was implanted. When the CAFs were eliminated on the third or fourth day, they found no major difference in tumor growth or risk of metastasis compared with the tumors where the CAFs remained. However, there was an increase in tumor-associated macrophages—cells that have been associated with metastasis—in this early stage.

    When the team waited to eliminate the CAFs until the 10th or 11th day, they discovered that in addition to the increase in macrophages, the cancer was more likely to spread to the lungs and bones of the mice. The unexpected results from this experiment could spur more research into the role of CAFs in cancer growth and metastasis.

    “The simplistic thinking about CAFs is that we should probably try to destroy them,” said Dr. Parekkadan. “There is evidence to support this idea, and until recently, I would have been in that camp as well. But now when looking at the selective removal of CAFs over time using this engineered approach, these results may be a signal that we should more fully investigate the dynamics of the tumor microenvironment and the timing of intervention in cancer treatment.”

    More research may reveal whether or not there is a scientific basis for targeting CAFs for destruction—and if so, the awareness that timing matters when it comes to the response of the tumor. While neither treatment affected the growth of the initial tumor, it is important to understand that most cancer deaths result from metastases to vital organs rather than from the direct effects of the primary tumor.

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential toxicity of the compou

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d

Novel Parkinson’s Therapies Possible with New Mouse Model

Parkinson's disease (PD) is a neurodegenerative disorder that is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Now, researchers from Brigham and Women's Hospital (BWH) report the development of a mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. The mouse responds to L-DOPA, similarly to patients with PD. The team's study (“Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson’s Disease”) on the use of this transgenic mouse model appears in  Neuron . “α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in PD. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutati