跳至主要内容

PDX models used in human surrogate trials are at the forefront of personalized medicine research

 Clinical cancer research is a rapidly evolving industry, with personalized medicine now at the forefront of clinical trials. The promise of profiling a patient’s genetic makeup to guide the drugs or treatments to either choose a more successful result or to minimize unpleasant or harmful side effects has obvious benefits. Another key goal for personalized medicine is to tailor the dosage depending on each individual’s absorption rate. This will give the doctor and patient the opportunity to plan for monitoring and prevention, essentially resulting in the right drug for the right person for the first time.

PDX model cancer

Cancer research is a complex industry with human tumors being extremely diverse in histopathology types and heterogeneous pathogenic mechanisms. Personalized therapy based on each individual’s disease and genetic makeup is believed to be the future of cancer treatment. Before personalized medicine, patients with a specific type and stage of cancer received the same treatment. However, it became clear to doctors and patients that some treatments worked well for some patients and not as well for others.

Recent advances in the field of cancer genomics have shown that genetic differences in people and their tumors explained many of these divergent responses to treatment. Although a person with cancer now may receive a standard treatment plan (such as surgery to remove a tumor), the doctor may also recommend some type of personalized cancer treatment. Personalized cancer treatments may be offered as an active part of the treatment plan or as part of a clinical trial (research studies in patients).

Basket and umbrella trials

Because we now understand that two cancers from the same organ – which look the same under a microscope – can have different genetic causes, whereas cancer types from different organs can share the same genetic abnormalities, patients with different cancer types can be treated with same targeted therapy that is specifically tailored to the genetic makeup of their tumor. This has been the basis of “basket trials” that enroll patients across different cancer types with the same abnormality to all be tested with the same agent. This is in contrast to traditional clinical trials, which usually focus on only one cancer type and sometimes regardless of mutation status.

A different type of approach is undertaken in the so called “umbrella” trials; these take only one disease type but split patients by their mutations and genetic markers to trial a whole range of therapeutic options in parallel. In an umbrella trial patients with a given molecular makeup of their cancer are assigned to the specific treatment arm that should hopefully result in their maximum response. The trials are designed to be modular and fluid depending on patient results and when new drugs become available. This flexibility and the variety of drugs tested at the same time should mean that as many patient groups as possible have their optimum treatment options identified.

PDX models

Both approaches recognize the importance of precision profiling of patients to further personalize medicine that translates into finding “the right treatment for the right person at the right time.” The evolution of clinical trials towards study types that should find the correct targeted agent for the correct patient groups in the most efficient fashion possible is crucial as the oncology drug development process is currently highly inefficient and needs a rapid overhaul to reduce attrition rates. The key to reduce attrition rates and maximize the efficiency of drug discovery programs is the use of genomically characterized patient-derived xenograft (PDX) models that are truly reflective of the patient population which can be used in preclinical Phase 2-like, human surrogate trials to evaluate oncology agents.

Medicilon's PDX Model

Now, Medicilon have the PDX models covering colon cancer,lung cancer,gastric cancer,breast cancer,liver cancer,pancreas cancer. Our research on PDX model includes molecular level genotyping and pharmacological efficacy evaluation service of orthotopic model, promising great prediction for clinical efficacy research.

PDX models used in human surrogate trials are at the forefront of personalized medicine research, offering a personalized diagnostic tool to identify the right compound for the appropriate patient population before new drugs are tested in the clinic.

Preclinical Phase 2-like trials, utilize a large cohort of PDX models with each PDX subject reflecting the pathology of its original patient (behaving as a patient avatar), and the cohort of patient avatars representing the diversity of the human patient population. Human surrogate trials can help to screen lead drug candidates, discover or validate predictive biomarkers and genetic signatures, and to position or reposition agents through identification of responder populations.

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential toxicity of the compou

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d

Novel Parkinson’s Therapies Possible with New Mouse Model

Parkinson's disease (PD) is a neurodegenerative disorder that is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Now, researchers from Brigham and Women's Hospital (BWH) report the development of a mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. The mouse responds to L-DOPA, similarly to patients with PD. The team's study (“Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson’s Disease”) on the use of this transgenic mouse model appears in  Neuron . “α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in PD. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutati