跳至主要内容

Ancient Gut Genetic Core Program Finding May Lead to New Digestive Disease Therapies

 Scientists from the Duke University School of Medicine have discovered a network of genes and genetic regulatory elements in the lining of the intestines that has stayed remarkably the same from fishes to humans. Many of these genes are linked to human illnesses, such as inflammatory bowel diseases, diabetes and obesity.

Medicilon can provide various animal models (including renal failure model, anemia animal model, gastric acid secretion animal model, and gastric ulcer model) to test drug effectiveness according to client needs. We can conduct tests on typical digestive system diseases, including gastric acid secretions, gastric ulcers, and renal failure, using rats as subjects.

The research (“Genomic Dissection of Conserved Transcriptional Regulation in Intestinal Epithelial Cells”), which appears in PLOS Biology, marks fish as a model organism for studying how this old genetic information (covering over 420 million years of evolution) controls the development and dysfunction of the intestine.

“The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature,” write the investigators.

“We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology.”

“Our research has uncovered aspects of intestinal biology that have been well conserved during vertebrate evolution, suggesting they are of central importance to intestinal health,” said John F. Rawls, Ph.D., senior author of the study and associate professor of molecular genetics and microbiology. “By doing so, we have built a foundation for mechanistic studies of intestinal biology in nonhuman model systems like fish and mice that would be impossible to perform in humans alone.”

According to Dr. Rawls, researchers for years have used animal models to collect information on intestinal epithelial cells that could help combat human diseases. But no one knew how alike these cells were across multiple species. He and colleagues took a comparative biology approach to address this issue.

Research associate Colin R. Lickwar, Ph.D., and the team obtained genome-wide data from intestinal epithelial cells in four species: zebrafish, stickleback fish, mouse, and human. Dr. Lickwar then created maps for each of the species that showed both the activity level of all of the genes and the location of specific regulatory elements that turned the genes on and off.

The group found a surprising amount of similarity between the different vertebrate species. Dr. Lickwar identified a common set of genes—labeled an intestinal epithelial cell signature—some of which had shared patterns of activity in specific regions along the length of the intestine. Many of these genes had previously been implicated in a variety of human diseases, and Drs. Lickwar and Rawls wanted to know if this conserved genetic signature was controlled by regulatory elements that might also be shared between species.

They took regulatory elements from fish, mice, and humans and put them into the zebrafish, which are transparent organisms. The scientists then looked under the microscope for color patterns to tell whether a green fluorescent protein or red fluorescent protein, which they had inserted along with the regulatory element, had been turned on in the intestine. They found that this was the case, indicating a very high level of conservation.

“Our findings suggest that intestinal epithelial cells use an ancient core program to do their job in the body of most vertebrates,” said Dr. Lickwar, who is lead author of the study. “Now that we have identified this core program, we can more easily translate results back and forth between humans and zebrafish.”

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...

What is Toxicokinetics?

Toxicokinetics  is essentially the study of “how a substance gets into the body and what happens to it in the body”. Four processes are involved in toxicokinetics. The study of the kinetics (movement) of chemicals was originally conducted with pharmaceuticals and thus the term pharmacokinetics became commonly used. In addition, toxicology studies were initially conducted with drugs. However, the science of toxicology has evolved to include environmental and occupational chemicals as well as drugs. Toxicokinetics is thus the appropriate term for the study of the kinetics of all toxic substances. Frequently the terms  toxicokinetics ,  pharmacokinetics , or disposition may be found in the literature to have the same meaning. Disposition is often used in place of toxicokinetics to describe the time-course of movement of chemicals through the body (that is, how does the body dispose of a xenobiotic?). The disposition of a toxicant along with its’ biological reactivi...