跳至主要内容

Gene Therapy Improves Metabolic Liver Disease Outcome

      

gene therapy.webp

        Scientists at the Mayo Clinic are testing a new approach to correct metabolic liver disorders without a whole-organ transplant. Their findings (“Curative Ex Vivo Liver-Directed Gene Therapy in a Pig Model of Hereditary Tyrosinemia Type 1”) appear in Science Translational Medicine.

In the field of metabolic diseases, we are proud of our portfolio of stable and effective animal models, especially those for Non-alcoholic Fatty Liver Disease (NAFLD). Though popular recently, they still lack effective drug treatment.

         The medical research study tested gene therapy in pigs suffering from hereditary tyrosinemia type 1 (HT1), a metabolic disorder caused by an enzyme deficiency. The common treatment for this disease is a drug regimen, but it is ineffective in many patients, and the long-term safety of using the drug is unknown.

        “Liver transplant is the only curable option in treating HT1, which is characterized by progressive liver disease,” says Raymond Hickey, Ph.D., a Mayo surgical researcher. “Using this novel approach to treat HT1 and other metabolic diseases will allow patients to avoid a liver transplant and save more lives.”

        Through gene therapy, the corrected liver cells are transplanted into the diseased liver, resulting in enzyme production. “This treatment is a new form of cell transplantation that utilizes the patient’s own cells, so it does not require immunosuppressive drugs and, thus, avoids the side effects of those drugs,” adds Scott Nyberg, M.D., Ph.D., a liver transplant surgeon at Mayo Clinic. This therapy resulted in the improvement of pigs with HT1 and the prevention of liver failure. The use of nuclear imaging enables the researchers to monitor expansion of the corrected cells through a noninvasive imaging process.

    “Pediatric patients suffering from inborn errors of metabolism of the liver will benefit most from this therapy,” says Dr. Hickey. “More than one-fifth of all pediatric liver transplants are a result of metabolic disease.”

评论

此博客中的热门博文

Medicilon and Binhui Biopharmaceutical Have Reached a Strategic Collaboration to Jointly Draw a New Blueprint for the Development of New Biological Drugs

  On March 18, Medicilon and Binhui Biopharmaceutical (Binui Bio) announced a strategic collaboration.  The two parties will work together to jointly explore the possibilities in cutting-edge fields such as oncolytic viruses, nucleic acid drugs and protein drugs. Gather and Work Together to Create Advantages      Facilitate the Research and Development of Oncolytic Viruses, Nucleic Acids, Proteins and Other Drugs As a one-stop biopharmaceutical comprehensive preclinical R&D service CRO, Medicilon has been developing and accumulating for 20 years, always adhering to the spirit of innovation, and has successfully constructed bi/multi-specific antibodies,  ADCs ,  mRNA vaccines ,  small nucleic acid drugs ,  PROTAC , and  CGT technical service platform  that have helped 421 INDs obtain clinical approval.  It is this outstanding achievement that has earned Medicilon wide recognition in the industry and laid a solid foundation f...

The Launch Meeting was Held by Medicilon and DAC Biotech of the Contract Research on ADC Preclinical Study

  Chuansha, Shanghai, Nov. 8th, 2019 — Medicilon held the launch meeting with Hangzhou DAC Biotech Co., Ltd to initiate the   preclinical study   of the antibody-drug-conjugate (ADC)  DXC005, including the   pharmacology study ,   DMPK study   and the   safety evaluation . Medicilon has previously completed integrated  preclinical research  on ADC drugs cooperating with DAC Biotech and other companies. Two of them has been approved by NMPA and entered Phase I clinical trials. About Hangzhou DAC Biotech Co., Ltd Hangzhou DAC Biotech, Co., Ltd was officially registered in HEDA Area, Hangzhou City, Zhejiang Province, China around the end of Year 2012, and is located nearby the bank of beautiful Qiantang River. The company focuses on developing conjugate of monoclonal antibody and small molecular cytotoxic drug, both of which are banded together with smart linkers. About Antibody-Drug-Conjugate (ADC) ADCs ...

A Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides for Sp3-Sp2 Bond Formation

  In 2012, a nickel-catalyzed reductive alkylation method of aryl bromides and chlorides was reported. Under the optimized conditions, a variety of aryl and vinyl bromides as well as active aryl chloride can be reductively coupled with alkyl bromides in high yields. The protocols were highly functional-group tolerant and the reactions were not air or moisture sensitive. The reaction showed different chemoselectivity than conventional cross-coupling reactions. Substrates bearing both anelectrophilic and nucleophilic carbon resulted in selective coupling at the electrophilic carbon (R-X) and no reaction occurred at the nucleophilic carbon (R-[M]). The 2010 Nobel Prize in Chemistry was awarded for the Pd-catalyzed cross-coupling, and in the past decade the progress in cross-coupling has not only had a significant impact on academic research but has also influenced the industrial synthetic application. The transition-metal-catalyzed union of nucleophilic organo-boronic acids with elect...