跳至主要内容

Scientists Synthesize New Drug Against Chemotherapy-resistant Cancer

 A team of Russian scientists led by Prof. Alexander Kiselyov from MIPT has synthesized an antitumor compound that can be used against chemotherapy-resistant cancers. The findings were published in the European Journal of Medicinal Chemistry.

Aminoisothiazole synthesis.webp

The scientists synthesized a new series of compounds called Aminoisothiazole and evaluated their anticancer effects using sea urchin embryos and human cancer cells. One of the molecules was shown to be potent and selectable.

Among the 37 compounds synthesized, 12 have different potencies to reduce the proliferation rate of cancer cells or completely prevent their division, resulting in the death of cancer cells. The action of these antineoplastic compounds is attributed to their ability to destroy microtubules involved in cell division (mitosis). Microtubules are made of a protein called tubulin, which can be targeted by anticancer agents, causing degradation of the microtubule structure.

The efficacy of synthetic compounds targeting microtubules was further evaluated using sea urchin embryos and a panel of human cancer cells from breast, melanoma, ovarian, and lung tumors. The sea urchin embryo has proven to be a good model for studying specific tubulin binders. They cause the embryo to spin rapidly instead of moving usually. This effect can be easily observed using light microscopy, allowing scientists to evaluate the anticancer potential of compounds in a short period.

In addition, the team found that sea urchin embryos were more sensitive to the drug than cancer cells. The difference between the duration of the mitotic cycle of sea urchin embryos and cancer cells (40 min vs. 24 h) may result in different effects of small molecules on tubulin dynamics and thus explain this phenomenon. A molecule characterized by 3-thiophene- and p-methoxyphenyl substituents were identified as the most potent anticancer agent under study. According to the researchers, this combination of functional groups, as well as the unique properties of the molecule, determines its activity. Specifically, the new drug exhibits anti-tubulin properties, as it blocks cell division by affecting microtubules, destroying chemoresistant cells of ovarian cancer.

The scientists plan to study microtubule degradation in more detail using crystallographic data and structural modeling techniques to identify sites where active compounds bind tubulin. In their earlier study, the researchers used substances isolated from dill and parsley seeds to synthesize another anticancer compound, glaziovianin A, and its structural analogs.

Medicilon is one of China's top drug R&D outsourcing service companies (CRO). It established the first Chinese compound synthesis, compound activity screening, structural biology, pharmacodynamics evaluation, and pharmacokinetics evaluation in Shanghai. A comprehensive technical service platform that meets international standards and is integrated with toxicological evaluation, and has been recognized by international drug management departments. Medicilon is one of the earliest Chinese local CRO companies to achieve internationalization. The animal experiment facilities have obtained the International Laboratory Animal Assessment and Accreditation (AAALAC) and the China Food and Drug Administration GLP certificate. We have reached the US Food and Drug Administration GLP standard. Medicilon will help customers achieve their goals faster with efficient and cost-effective one-stop professional services.

Medicilon can undertake the synthesis of special reagents, intermediates and molecular fragments, preparation of standard products, synthesis design and preparation of impurities or metabolites, synthesis of stable isotope internal standards and synthesis of tritiated compounds.

评论

此博客中的热门博文

What is preclinical testing?

In the process of  preclinical testing  of a compound or biological agent into a drug, the compound involved must go through the testing phase. First, we need to identify potential targets that can treat the disease. Then, a variety of compounds or preparations are screened out. Any compound that has shown potential as a drug for the treatment of this disease needs to be tested for toxicity before clinical testing to reduce the possibility of injury. preclinical testing What is the basis of preclinical testing? According to US Food and Drug Administration (FDA) regulations, a series of tests are required before a new drug is approved for use. In the first stage, basic research determines a hypothetical target for the treatment of a certain disease, and then screens small molecules or biological compounds to discover any substance with the potential to treat the disease. Then, a  preclinical research  phase followed, before which, as described above, the potential toxicity of the compou

Inventory of the three major in vitro pharmacokinetic research methods

  The metabolic properties of a compound are an essential factor in whether or not it can be used as a drug in the clinical setting, so pharmacokinetic studies of newly synthesized compounds are required in drug development. In vitro incubation with liver microsomes, recombinant CYP450 enzyme lines, and in vitro incubation with hepatocytes are some of the more common in vitro drug metabolism methods. 1. In vitro incubation method with liver microsomes The metabolic stability and metabolic phenotypes of candidate compounds in different species of liver microsomes are good predictors of the metabolic properties of compounds in vivo. They are practical tools for evaluating candidate compounds in the pre-development phase of drug development. Liver microsomes include rat liver microsomes, human liver microsomes, canine liver microsomes, monkey liver microsomes, and mouse liver microsomes. In in vitro incubation of the liver, microsomes are the "gold standard" for in vitro d

Novel Parkinson’s Therapies Possible with New Mouse Model

Parkinson's disease (PD) is a neurodegenerative disorder that is marked by the accumulation of the protein, α-synuclein (αS), into clumps known as Lewy bodies, which diminish neural health. Now, researchers from Brigham and Women's Hospital (BWH) report the development of a mouse model to induce PD-like αS aggregation, leading to resting tremor and abnormal movement control. The mouse responds to L-DOPA, similarly to patients with PD. The team's study (“Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson’s Disease”) on the use of this transgenic mouse model appears in  Neuron . “α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in PD. Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutati